Learning and Forecasting Opinion Dynamics in Social Networks

نویسندگان

  • Abir De
  • Isabel Valera
  • Niloy Ganguly
  • Sourangshu Bhattacharya
  • Manuel Gomez-Rodriguez
چکیده

Social media and social networking sites have become a global pinboard for exposition and discussion of news, topics, and ideas, where social media users often update their opinions about a particular topic by learning from the opinions shared by their friends. In this context, can we learn a data-driven model of opinion dynamics that is able to accurately forecast users’ opinions? In this paper, we introduce SLANT, a probabilistic modeling framework of opinion dynamics, which represents users’ opinions over time by means of marked jump diffusion stochastic differential equations, and allows for efficient model simulation and parameter estimation from historical fine grained event data. We then leverage our framework to derive a set of efficient predictive formulas for opinion forecasting and identify conditions under which opinions converge to a steady state. Experiments on data gathered from Twitter show that our model provides a good fit to the data and our formulas achieve more accurate forecasting than alternatives.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Opinion Mining, Social Networks, Higher Education

Background and Aim: With the advent of technology and the use of social networks such as Instagram, Facebook, blogs, forums, and many other platforms, interactions of learners with one another and their lecturers have become progressively relaxed. This has led to the accumulation of large quantities of data and information about studentschr('39') attitudes, learning experiences, opinions, and f...

متن کامل

Forecasting Stock Price Movements Based on Opinion Mining and Sentiment Analysis: An Application of Support Vector Machine and Twitter Data

Today, social networks are fast and dynamic communication intermediaries that are a vital business tool. This study aims at examining the views of those involved with Facebook stocks so that we can summarize their views to predict the general behavior of this stock and collectively consider possible Facebook stock price movements, and create a more accurate pattern compared to previous patterns...

متن کامل

Modeling Opinion Dynamics in Diffusion Networks

Social media and social networking sites have become a global pinboard for exposition and discussion of news, topics, and ideas, where social media users often form their opinion about a particular topic by learning information about it from her peers. In this context, whenever a user posts a message about a topic, we observe a noisy estimate of her current opinion about it, however, the influe...

متن کامل

Balanced clusters and diffusion process in signed networks

In this paper we study the topology effects on diffusion process in signed networks. Considering a simple threshold model for diffusion process, it is extended to signed networks and some appropriate definitions are proposed. This model is a basic model that could be extended and applied in analyzing dynamics of many real phenomena such as opinion forming or innovation diffusion in social netwo...

متن کامل

Opinion Dynamics and Learning in Social Networks

We provide an overview of recent research on belief and opinion dynamics in social networks. We discuss both Bayesian and non-Bayesian models of social learning and focus on the implications of the form of learning (e.g., Bayesian vs. non-Bayesian), the sources of information (e.g., observation vs. communication), and the structure of social networks in which individuals are situated on three k...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016